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Quadrature Methods for Stiff Ordinary 
Differential Systems* 

By A. Iserles 

Abstract. The quadrature methods are based upon a substitution of an explicit A-stable first 
approximation into a generalized convolution formula. They are A -stable, explicit, and of 
arbitrarily high order. 

The generalized convolution formula is derived and its order-raising properties examined. 
Two families of explicit A-stable first approximations are developed, generalizing results of 
Lawson and N0rsett. Various aspects of the numerical implementation are discussed. 

Numerical results supplement the paper and exemplify the various merits and weaknesses 
of the quadrature methods. 

1. Introduction. The purpose of this paper is to present a family of new methods 
for the numerical solution of stiff differential systems. 

The methods of Norsett [7], Jain [3], and Lawson [4] are A -stable, explicit, and of 
arbitrary order. Hence, they have the advantage, over implicit methods, that they 
do not require some sort of iteration. However, the methods of Norsett-Jain-Law- 
son type suffer from one crucial deficiency: they are based on local approximation 
of the differential equations by a linear system. When the nonlinearity of the 
differential equations grows, the accuracy rapidly deteriorates and one is compelled 
to use excessively small step-lengths. This deterioration is accelerated if, as is 
usually the case, the Jacobian matrix is computed only once for several steps of the 
solution or if it is approximated by finite differences. 

The quadrature methods are a generalization of the Norsett-Jain-Lawson tech- 
nique, or, in fact, of any explicit A -stable method. An explicit method is used to 
compute approximations to the solution for a wide range of points. These ap- 
proximations are substituted into a generalized convolution formula, which is 
integrated by either Gaussian or Newton-Cotes quadrature. 

These methods are derived by expanding a basic idea of Meister [6]. Meister 
advocates a computation of a polynomial approximation to the solution by some 
explicit method (for example explicit Runge-Kutta). This approximation is sub- 
stituted into the convolution formula, which is integrated analytically (except that 
there is an approximation to the exponential of a matrix). 

Our approach differs from Meister's on several points: 
a. A generalized convolution formula is used, in order to cover the multideriva- 

tive case and to allow an increase in the order. 
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b. Instead of using polynomial approximation, we apply numerical integration to 
an arbitrary explicit first approximation. This is an advantage if high order is 
desired: using explicit Runge-Kutta for the construction of the polynomial ap- 
proximation, one requires at least m - 1 function evaluations for order m, but, 
using a Gaussian quadrature method, one needs only [(m + 1)/2] + 1 function 
evaluations for order m. 

c. By taking advantage of the special structure of matrices, which appear in both 
the N0rsett-Jain-Lawson type of methods and in the quadrature method, the 
amount of algebraic calculations is kept reasonably small. In fact, for large 
differential systems (where the overhead of algebraic calculations substantially 
matters), the additional algebraic expense of the quadrature, over the first ap- 
proximation, is marginal. 

In Section 2, we develop the generalized convolution formula and analyze its 
properties. In Section 3, we discuss the explicit first approximations. Section 4 is 
devoted to the computational aspects of the method. Finally, Section 5 gives 
numerical examples, which highlight the implementation of the method. 

2. The Generalized Convolution Formula. Let the ordinary differential system 

(1) y' = f(t, y), y(to) = yo E EN 

be given. For any N-by-N matrix A, the system (1) can be rewritten as 

y' = Ay + g(t, y), y(to) = yo, 
where g(t, y) = f(t, y) - Ay. Hence, its solution is given by the convolution for- 
mula 

(2) y(t) = exp((t - to)A){yo + ftexp(- (s - to)A)g(s, y(s)) ds} 

Normally, A is either the Jacobian matrix of (1) or an approximation to the 
Jacobian matrix. Although the convolution formula is important to the theory of 
differential equations and to control theory, it seems that the only explicit applica- 
tion to the numerical solution of ordinary systems is the one given by Meister [6]. 

As it is often easy to obtain higher derivatives of y from (1) by direct differentia- 
tion, y" = (a/at)f(t, y) + (a/ay)f(t, y)y' etc., it is advantageous to include higher 
derivatives in the convolution formula (2). This is done in 

THEOREM 1. Let Fk(t, A) = (dk/dtk)(exp(-(t - to)A)y(t)), k = 0, 1 Then, 
if y is in Cn, the following formula (generalized convolution formula) holds: 

n- 1 
y(t) = exp((t -to)A) E W- (t - to)kFk(tO' A) 

(3) 
k= O 

+ ( 1)! j:(t - s)n Fn(s, A) ds. 

Proof. By a repeated integration by parts of the integral on the right, the formula 
(3) reduces to (2). En 

If y(t) is the exact solution of (1) at t, then, by Leibnitz' rule, 
k 

k k 
Fk(t, A) = exp(- (t - to)A) E( 1i)_j)k-iy,i(t), k = 0, ... , n, 
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where y(i)(t) = (d'/dt')y(t), i = 0, . . ., n. Hence, the generalized convolution for- 
mula (3) can be written in the form 

y(t) = exp((t - to)A) E I (t - to)k (k )k-iAk iy(i) 

(3') k= = 

+ (n I _)! (tn-s) exp((t - s)A) E (n)(_l)-iAn-iy(i)(s) ds 

Example. For n = 1, (3') is identical to (2), the usual convolution formula. For 
n = 2, we obtain 

y(t) = exp((t - to)A) {y0 + (t - to)(y' - Ay0)} 

+ ftexp((t - s)A)(t - s)(A2y(s) - 2Ay'(s) + y"(s)) ds. 
to 

In practice, of course, instead of using an exact exponential of a matrix in 
formula (3), one approximates it by a rational function. The integration is replaced 
by a quadrature formula. 

The main advantage of the generalized convolution, which is that this formula 
raises the order of the initial approximation by n, is shown in the sequel. 

The formula (3') is used for the computation of y(tl), t1 = to + h, in the 
following way: 

We choose a quadrature formula with the nodes to + ckh and weights wk, 

k = 1, . .. ., M, and then evaluate some first approximation Yk to the solution of (1) 
at the quadrature nodes. This approximation is substituted into the integrand on 
the right of (3'), the exponentials are replaced by rational approximations, and 
finally the integral is approximated by the quadrature. 

The derivatives of y at the quadrature nodes can be estimated by substitution of 
Yk into the formal differentials of (1): 

f(to + ckh, ak) Yk -f(to + ckh, k) + a f(to + ckh, Yk) etc k ~~ ~~~at ay0k 
Observe that if Yk - y(to + Ckh) = O(h m +'), where y is the exact solution of (1) 
and f is in Cn +, then the differentiability of the formal derivatives of (1) implies 
Y(k) - y(i)(to + ckh) = O(hm+'1), i = 0 . , n. 

THEOREM 2. Let the function f in (1) be in Cn +, tI = to + h and {cl, . . ., CM), 
{W1, ... , wm } nodes and weights, respectively, of a quadrature formula. Then, if 

(i) Yk,) - y()(to + ckh) = O(hm+I), i = 0, . .. , n, k = 1, .I. , M, where y is the 
exact solution of (1) and 5?' is the initial approximation to the ith derivative of y at 
the kth quadrature node; 

(ii) the order of the quadrature is m; 
(iii) the exponential which precedes the sum on the right of (3') is replaced by an 

approximation R1 of the order n + m; 
(iv) the exponential in the integrand on the right of (3') is replaced by an 

approximation R2 of the order m 
then the order of the method is n + m, i.e. 
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y*(tl) = RI(hA) E h"E 0(k)( l)kiAkiy&) 

(4) + 1 n Iw( - ck C")nR2((A 
i Ck)A) E) 

(n -1)! k-I 
Wk CO 

2J 

y*(tl) -y(t1) = O(h n+m+l ) 

Proof. Let us assume first that we substitute on the right of (4) the exact solution 
y of the differential equation (1), obtaining an approximation y**(tl) on the left. 
Then 

y**(t)-y(tl) = {Rl(hA) - exp(hA)} I k!bhk k ( _k )(_l)k-iAk-iy(i 

+ ( 1)' hn i Wk(1 - ck) R2((1 Ck)hA) 

n 

*E (- )n-iA n-iy(i)(to + ckh) 
i=O 

s)n- lexp((l - s)hA) E (-1) n-iA n-iy(i)(s) ds } 

But 

RI(hA) - exp(hA) = O(h n+m+ I); 

RJO1- ck)hA) - exp((l - ck)hA) = O(hm+'), k = 1, ... , Mg 

and the quadrature is of the order m. Hence, 

y**(tl) - y(tl) = O(h n+m+ ). 

Finally, 

M 
y*(t1) - y**(t1) = hn 1) h Wk(1 - ck) R2((1 - 

Ck)h) (n -)! k-i 

n n 
(_ )(-l)n-iAn-i{f(i) - y(i)(to + ckh)} = O(hn+m+l ), 

1=0 

according to condition (i). Therefore, 

y*(tl) - y(tl) = (y*(tl) - y**(tl)) + (y**(tl) - y(tl)) = O(hn+m+m ), 

and the proof follows. EC 
We call methods of this type quadrature methods. 

3. First Approximation. The first approximation y is required at all the quadra- 
ture nodes in the interval [to, to + h]. In order to minimize the computational 
effort, it is best to obtain y by an explicit method. It is demonstrated in the sequel 
that y can be computed for a whole range of points with just one evaluation of the 
system (1). In the next section we also show that just one LU factorization of a 
matrix (or related algebraic procedure) is required for the computation of the 
exponential approximations for the whole range of quadrature nodes. 

There are two approaches, to be found in the literature, for constructing A -stable 
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explicit methods of arbitrary order. The first (Lawson, [4]) consists of a transforma- 
tion of the system (1) and subsequent application of an explicit Runge-Kutta 
method. The second (N0rsett, [7]) gives linear multistep methods with matricial 
coefficients (this approach has been generalized by Jain [3], to include multistep 
methods with second derivatives). 

For the sake of simplicity and in order to minimize the number of function 
evaluations, we are interested in linear multistep methods with matricial coeffi- 
cients. If higher derivatives are available and the generalized convolution formula 
is used, we naturally are interested in multiderivative versions of these methods, 
which yield higher order. Finally, the functions are evaluated at the quadrature 
points, and so the mesh points cannot be assumed equispaced. 

The Lawson transformation depends on the change of variable 

z(t) = exp(- (t - to)A)y(t), 

where A is the Jacobian matrix. An explicit method is used to solve the differential 
equation that is satisfied by z. Let 

q s 

(5) E E aikY( )(t-i) = AOtl 
i=O k=O 

be a zero-stable explicit multistep-multiderivative method of order m, where 
t1 > to > t1I > > tq and y(k) denotes the kth derivative of y. 

Straightforward differentiation implies 
k 

z(k)(t) = Fk(t, A, y) = exp(- (t - to)A) 2 (-1) kAk jy()(t). 
i=O 

Hence, applying the approximation (5) to z, instead of to y, yields 
q s 

k~~~~~~~)- k k-jU( 
E aikexp(- (t_ - to)A) , (-1) (I.)Aky)(t_) 

i=O k=O j=O 

= exp(- (t -to)A)y(tl) 

or, after rearrangement, 
q 

(6) y(t1) E exp((t- t- 
k A kA )y (tj. 

i=O i0k= 

Instead of matrix exponentials we use appropriate approximations (this problem 
will be discussed later). 

Evidently, the computation of y(tl) requires just one evaluation of y(k), k= 
1, ...,s, at t = to (the derivatives at t_i, i = 1, . .. , q, are known from previous 
steps). Furthermore, computation of y at several points does not require any extra 
function evaluations. 

We call the second approach the Hermite method. For the q-step, (s - l)th order 
derivative case let gik, i = O, I . . , q, k = 0, . . . , s - 1, be the generalized Hermite 
interpolation polynomials with nodes at the previous integration points to > t -I 
> . . > t_q, such that deggik =(q + l)s - land 

tp gik(t-r) = 6ir6k,pl r = O,..., q, p = O, s - 1, 

where 6 is the delta of Kronecker. Then it follows, as in [7] and [3], that the error of 
the approximation 
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q s-1 

(7) y'(t) - Ay(t) E E gi,(t)(y(k+l)(t-) - Ay(k)(t i)) 
i=O k=O 

is of order (q + l)s. 
Let A be the Jacobian matrix at (to, y0). Multiplying (7) by exp(-tA) and 

integrating from to to t1 (the integration increases the order by one), we obtain 
q s-1 

(8) y(t1) = exp((t1 - to)A)y(to) + E E Hik(ylk I(t_i) -Ay(k)(t_i)) 
i=O k=O 

where 

Hik = f exp((ti - p)A)gik(p) dp. 
to 

The integrals Hik can be evaluated analytically. Afterwards the exponentials are 
replaced by suitable approximations. 

Once again, the computation of y for a whole range of points requires just one 
evaluation of y(k) k = 1, . . ., s, at t = to. 

Examples. 
(i) q = 0, s = 1; order 1: 
Lawson transformation: y(tl) = exp((t1 - to)A)(y(to) + (t - to) -Ay(to)); 
Hermite method: y(tl) = y(to) + A -'(exp((t1 - to)A) -I)y(to), 
(ii) q = 1, s = 2; order 4: 
Let h = to- t-,v = (t1 - to)/h > O,a = v-v3 -_v4,b b v2+ 2v3 + Iv4. 

Lawson transformation: 

y(tl) = exp(hvA){ [(I - aA + bA 2)y(to) + (aI - bA )y'(to) + by"(to)] 

+ exp(hA) [(I - (v - a)A + (I V2(l + V)2 - b)A 2)y(t_) 

+ ((v - a)I - (Iv2(1 + v)2 - b)A)y'(t-1) 

+ (Iv2(l + V)2 -b)y 

Hermite method: 

y(tl) = exp(hvA)y(to) + Ho0o(y'(to) - Ay(to)) + Ho0,(y"(to) - Ay'(to)) 

+ Hlo(y'(t-1) - Ay(t-1)) + Hl1(y"(t1) -Ay'(t_lA 

where 

Ho,o = 12((I + 2hA)exp(hvA) 

(I+ (V + 2)hA + 2 (v + 1 )h2vA 2 + (V + 3vA 3)) 3A 4; 

Ho, 
= 6((I + 'hA)exp(hvA) 

- ( + (v + ')hA + (2v + )h2vA + 6(v + I)h3V2A3))/h2A4; 

H10 = -12((I + hA - 12h3A 3)exp(hvA) 

- + (v + ')hA + (v + 1)h2vA2 + (6v3 + V -F2 

H1,1 = 6((I + 2 hA + h2A2)exp(hvA) 

- (I - (v + 2 )hA + (4v2 + 2v + I )h2A 2 + (Qv2 + 'v + )h3vA 3))/h2A4. 
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In practical computation the exponential is replaced by some rational approxi- 
mation. For example, if the first diagonal Pade approximation R11(x) = 

(1 - 2x)-'(1 + 2x), R1,l(x) - exp(x) = 0(x3), is used, the methods (i) are 

y(tl) = (I- (t-to)A)(I + - (tto)A) [y(to) + (t1 - to) - Ay(to)] 

and 

y(tl) = y(t0) + (I- 4(t,to)A) (t--to)y'(to) 

respectively. 

4. Computational Aspects. The selection of an integration method in (3) is closely 
related to the selection of an exponential approximation. On the one hand, it is 
desirable to obtain an integration order as high as possible with few function 
evaluations. On the other hand, the number of algebraic operations, required by 
the evaluation of the exponential approximation at different points, should be 
small. 

Because the nodes of integration of a closed Newton-Cotes formula are 
equispaced, one can take advantage of the multiplicative property of the exponen- 
tial to reduce the volume of algebraic computations. However, Newton-Cotes 
integration is wasteful in terms of function evaluations. 

As is well known, for a fixed order of integration, the greatest saving on function 
evaluations (i.e. the minimal number of integration nodes) is obtained for Gaussian 
quadrature (based on polynomials orthogonal in [to, tl] in respect to the weight 
function (t, - s) -1). According to Theorem 2 we are interested in integration of 
order m. Hence, it is possible to use either Gauss-Jacobi integration with q nodes, 
q = [m/2] + 1, or Gauss-Jacobi-Lobatto integration with q + 1 nodes, including 
the endpoints of the interval. These two methods are equivalent in terms of 
function evaluations and computation of exponential approximations. 

The multiplicative property of the exponential is not helpful when Gaussian 
quadrature is used, because the nodes of the quadrature formula are not 
equispaced. In this case, however, much work can be saved by applying the 
multivalued exponential approximations [2]. The technique is to develop approxi- 
mations to exp(qz) of the form P(q, z)/Q(z). Because the denominator is indepen- 
dent of q, one only has to carry out once the major computational effort in the 
evaluation of an exponential approximation, which is to factorize the matrix of an 
algebraic linear system. The order of approximation of P(q, z)/ Q(z) for 0 < q < 1 
can be less than for q = 1, because of the conditions (iii) and (iv) of Theorem 2. It 
is shown in [2] that the Gauss-Jacobi-Lobatto integration has certain advantages in 
this context. 

5. Numerical Examples. In this section, the performance of four quadrature 
methods is examined on three test problems. Their performance is compared with 
the analogous Lawson and Hermite methods. In order to provide a direct compari- 
son, the tests were carried out with fixed step lengths and the same procedures for 
numerical algebra. 

In the following, A denotes the Jacobian matrix of (1) at to, Yo = y(t0), Y1/2 = 

y(to + 2h), y1 = y(to + h), where h = t- to. q and s have the same meanings as 
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in Section 3. exp(hA) is approximated by the second diagonal Pade approximation, 
R = (I - lhA + 1 2A2)-1(I + I hA + I h2A2). In all cases y' = f(t, y), y = 

(a/at)f(t, y) + (a/ay)f(t, y)y'. 

QLI: Quadrature of Lawson transformation with q = 0 (one step) and s = I 
(only the first derivative present). Trapezoidal integration is used and the order is 
two: 

Yj = R(yo + h(yo - Ay0)); y1 = R(y0 + h(yo - Ay0)) + 4h(t -AyI). 

QHI: Quadrature of Hermite method with q = 0, s = 1. The details of integra- 
tion and the order are the same as for QL1: 

Yj = yo + A-'(R - I)yo; Yi = R(yo + 'h(y0 - Ayo)) + 4h(y( -Ay). 

QL2: Quadrature of Lawson transformation with q = 0, s = 2. Order 4 is 
obtained by two-point integration with nodes to and to + 'h and weights (65 3)- 

exp(Q hA) is approximated by the multivalued second diagonal Pade approximation 

[2], 

exp(2hA) t S = (I- !hA + h2A2)l(I-lh2A2) 
2 12 \24 / 

Yi/2 = S(y0 + 'h(y- Ay0) + 'h2(y' - 2Ay, + A2yo)); 

Yi = R(y0 + h(y - Ay0) + lh2(yg - 2A y; + A 2y0)) 

+ I S 2Ay2 + A 

QH2: Quadrature of Hermite method with q = 0, s = 2. The integration and 
exponential approximation are the same as for QL2: 

Y1/2 = Yo + 'hy' + A-2(S - I -hA)yo; 

Yi = R(y0 + h(y0 - Ay0) + h2 (y,'-2Ayo + A2yo)) 

+ ("2- 2A~"12 
I/ 1 ('t22y/2 + A y/2). 

These methods are compared with the corresponding Lawson and Hermite 
methods: 

LI: Lawson transformation with q = 0, s = 1 (order one): 

Yi = R(y0 + h(yo - Ay0)). 

H1: Hermite method with q = 0, s = 1 (order one): 

y, = Yo + A-(R - I)y0. 

(L1 and H1 correspond to example (i) of Section 3, with the exponential replaced by 
the rational approximation R.) 

L2: Lawson transformation with q = 0, s = 2 (order two): 

= R(y0 + h(y; - Ay0) + h2(y' - 2Ayo + A2y0)). 

H2: Hermite method with q = 0, s = 2 (order two): 

Yi = Yo + hyo + A-2(R - I - hA)y". 

It should be mentioned that all the eight methods are one-step (i.e. q = 0 in the 
formulation of Section 3), and so self-starting. Of course, in practical programming 
one can use, as well, methods with positive values of q, i.e. multistep. 
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The performances of these eight methods are compared on the following prob- 
lems: 

Problem 1. 

y= -(80 +/ (I + t))yj - (40 - 2/ (1 + O)Y2; 

y2 = - (40 _ 25/ ( + t))yj -(20 +4/( + t))y2; 

YI) = 0, y2(0) = . 
This is a linear system with variable coefficients, whose analytic solution is 

y1(t) = 0.4(e1?t - 1/ (1 + t)); y2(t) = 0.2(e1?' + 4/ (1 + t)). 

It is mildly stiff, with the eigenvalues -100 and -1/(1 + t). 
The integration was carried out in the interval [0, 2], with a fixed step length. 

Table 1 gives the absolute error (in maximum norm) for different step lengths. 
The table shows that the errors of all eight methods grow as hP, where p is the 

corresponding order. This is in perfect agreement with the assumption that the 
local error is governed by the principal error term. 

TABLE I 

h = 0.025 0.05 0.01 0.2 

Li 2.23 x 10-3 4.46 x 1 0-3 8.93 x 10-3 1.74 x 10-2 

H1 2.23 x 10-3 4.46 x 10-3 8.93 x 10-3 1.74 x 10-2 

L2 2.49 x 10-3 1.00 x 10-4 4.05 x 10-4 2.14 x 10-3 

H2 5.04 x 10-5 2.06 x 104 8.57 x 104 4.21 x 10-3 

QL1 1.25 x 10-5 5.07 x 10-5 2.08 x 104 3.73 x 104 

QH1 1.25 x 10-5 5.07 x 10-5 2.08 x 104 3.73 x 104 

QL2 1.98 x 10-9 3.19 x 10-8 5.14 x 10-7 9.88 x 10-4 

QH2 2.35 x 10-9 3.80 x 10-' 6.18 x 10-7 9.88 X 10-4 

The following conclusions can be derived from Table I: 
a. The quadrature device increases greatly the accuracy of the solution. 
b. By comparing methods of the same order (L2 and H2 versus QL1 and QH1) it 

can be seen that the quadrature methods are marginally better. However, instead 
of, say, N evaluations of the functions y' and y", which is required by L2 and H2, 
the quadrature methods require only 2N evaluations of y'. Hence, the quadrature 
methods avoid the programming effort, and perhaps an increase in computer time, 
for second derivatives. 

c. The performances of L1 and H1 are identical, while L2 performs better than 
H2. The same behavior is shown by the quadrature methods. 

Problem 2. 

Y= -[(4a + b)y1 + (2a - 2b)y2]-2ceq'(2y1 + y2)2/25; 

Y2= -[(2a - 2b)yj + (a + 4b)y2] -ceat(2y + y2 

yl(0) = 2-d, Y2(0) = 1 + 2d. 
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This problem was considered by Liniger [5]. The solution is 

yl(t) = 2ea'/ (1 + ct) - debt; y2(t) = e-a/ (1 + ct) + 2de bt 

and the eigenvalues are -b and -(a + 2c/(1 + ct)). Following Liniger, the param- 
eters were fixed as a = 0.2, b = 200, and d = 0. The problem was tested for the 
following values of the "nonlinearity coefficient": c = 0, I0V, 10-2, 101, 1, 10. 
Table II gives the respective global absolute errors at t = 2 (in maximum norm), 
with step-length h = 0.1. 

TABLE II 

c = 0 io-3 10-2 10-, 10 

Li 1.19 x I10? 2.67 x 10-7 2.55 x 10-5 1.71 x 10-3 1.62 x 10-2 8.94 x 10-3 

Hi 1.19 x 10-10 2.69 x 10-5 2.60 x 104 1.91 x 10-3 3.61 x 10-3 2.31 x 10-3 

L2 1.19 x 10-10 1.16 x 10-'? 8.25 x 10-9 5.27 x 106 3.75 x 104 1.51 x 10-3 

H2 1.19 x 10-10 1.80 x 10-7 1.73 x 106 7.50 x 106 3.32 x 104 1.50 x 10-3 

QL1 1.19 x 10-'? 1.29 x 10-10 4.38 x 10-9 2.52 x 10- 1.28 x 10 5.45 x 104 

QH1 1.19 x 10-10 1.30 x 10-'? 4.66 x 10-9 2.82 x 106 2.13 x 104 2.11 x 10-3 

QL2 1.19 x 10-10 1.25 x 10-10 1.86 x 10-10 2.32 x 10-9 3.53 x 10-7 5.04 x 10-' 
QH2 1.19 x 1010 1.25 x 10-10 1.86 x 101'? 2.31 x 10-9 6.48 x 10-7 1.64 x 104 

This table illustrates the sensitivity of the methods to nonlinearity. Because 
Problem 2 is linear when c = 0, this column shows the error of the exponential 
approximation (which is the same for all eight methods). We note that: 

a. The quadrature methods deteriorate more slowly when the problem is more 
nonlinear. 

b. The quadrature methods of order 2, namely QL and QH, are somewhat better 
than L2 and H2, which are also of order two. One should remember also that the 
implementation of QL1 and QH1 does not require second derivatives. 

c. The Lawson transformation performs consistently better for small positive 
values of c, although the L and H methods perform in the same manner when the 
nonlinearity is strong. This property, however, is not obtained by the quadrature 
methods. 

Problem 3. 

y= -2999.8yi + 999.9Y2 + C(5y21 - 2y1y2); 

Y2 = -5999.8Y, + 1999.7Y2 + c(6y -2 

YJ0) = 0, Y2(0) = 1. 

The problem is moderately stiff. For c = 0, the eigenvalues are -0.1 and -1000 
and the stiffness ratio is 104. Its solution is 

Y1(t) = ZI(t) - Z2(t); Y2(t) = 3ZI(t) -2Z2(t), 

where 

Z1(t) = e- e/ (I + 10c(1 -e- 
I 

1)); 

Z2(t) = e-''/ (1 + c 1 1000t) 
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Once again, the sensitivity to nonlinearity was tested, with c = 0, -0.1, -1, -10. 
Table III shows the respective relative errors at t = 10 (the relative errors in both 
components are equal), using the step-length sequence: 

0 < t < 0.05 =X h = 0.01 (boundary layer); 
0.05 < t < 0.5 = h = 0.025, 

0.5 < t < 10 = h = 0.25. 

TABLE III 

c = 0 -0.1 -1 -10 

Li 1.95 x 10-7 9.27 x 10-3 5.03 x 10-2 8.37 x 10-2 

H1 1.95 x 10-7 1.79 x 104 2.05 x 10-3 6.59 x 10-3 

L2 1.95 x 10-7 1.12 x 10-5 1.23 x 10-3 5.81 x 10-3 

H2 1.95 x 10-7 1.79 x 104 2.05 x 10-3 6.59 x 10-3 

QL1 1.95 x 10-7 1.02 x 10-5 2.09 x 104 3.48 x 104 

QH1 1.95 x 10-7 4.88 x 10- 7.25 x 104 4.22 x 10-3 

QL2 1.95 x 10-7 2.99 x 10-7 1.01 X 10- 1.36 x 10-5 

QH2 1.95 x 10-7 2.90 x 10-7 4.50 x 10- 8.33 x 10-5 

The improvement of the quadrature methods that is shown in Table III is 
consistent with Tables I and II. However, it is no longer true that L1 is better than 

H,, but L2 is better than H2. In the quadrature methods, the Lawson transforma- 
tions and the Hermite methods perform similarly. 

Inasmuch as it is possible to derive practical conclusions from only three test 
problems, the numerical results which are presented in this paper suggest: 

(i) The quadrature device greatly improves the precision of a method. This is to 
be expected because the order increases. 

(ii) The quadrature methods give a slight advantage over both Lawson and 
Hermite methods of the same order, as far as precision is concerned. However, 
their main advantage is that they avoid the need for some higher derivatives. 

(iii) It is not possible to decide, on the basis of presented numerical evidence, 
whether the Lawson transformation or the Hermite method is more suitable. 

It should be mentioned that, in order to incorporate the quadrature methods in a 
package for the numerical solution of stiff differential systems, it would be 
necessary to study devices for stepsize control and local error estimation. Among 
the many likely candidates for such a device, two seem the most promising: 

(a) Error estimation technique of Zadunaisky type [8]. It consists of an additional 
solution, with the same stepsize, of a linear equation which is derived from (1) and 
whose close-form solution is known. The comparison of the numerical and the 
analytic solutions of this auxiliary equation yields an estimate of the local error in 
the solution of the system (1). 

(b) Automatic step and order adjustment, as in the Gear method [1]. By taking 
advantage of the Nordsieck representation, Gear's method estimates the local error 
of backward difference multistep methods. Similar devices can be developed for 
the quadrature method using either Nordsieck representation or approximation to 
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the derivatives by polynomial interpolation. If the error in the approximation of 
exp(hA) is neglected, it is both easier and more natural to estimate the principal 
error term in the expansion of y(t) - exp((t - to)A)y(to) (i.e. in the evaluation of 
the integral in (2)) than in the expansion of y(t). 
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